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TECHNICAL REPORT NUMBER 31 (REVISED) 

A GENERALIZATION OF THE WEIBLJLL DISTRIBUTION 

A. Clifford Cohen 

The University of Georgia 

SUMMARY 

The two-parameter Weibull distribution with origin at zero and 

the three-parameter version of this distribution with origin at 

widely employed as statistical models in connection with life testing. 

In this paper a four-parameter generalization of this distribution is 

introduced in order to provide a more versatile model f o r  use in life 

studies and in related investigations. 

Y are 

The problem of parameter estimation is considered and three separate 

sets of estimators are presented. These are, i) moment estimators, 

ii) maximum likelihood estimators and iii) alternate estimators 

based on the first three moments and the first order statistic. 

iii 



A GENERALIZATION OF THE WEIBULL DISTRIBUTION 

A. C l i f f o r d  Cohen 

The Univers i ty  of Georgia 

1. INTRODUCTION 

I t  is  well  known t h a t  t h e  three-parameter gamma d i s t r i b u t i o n  

( i . e .  t h e  Pearson Type I11 d i s t r i b u t i o n )  may be obtained from t h e  

one-parameter gamma d i s t r i b u t i o n  by making t h e  transformation 

z = (x - y)/B , where t h e  dens i ty  o f  t h e  s i n g l e  parameter gamma d i s t r i b u -  

t i o n  i s  w r i t t e n  as 

Numerous w r i t e r s  have s tud ied  t h e  gamma d i s t r i b u t i o n  i n  i ts  

v a r i o u s  forms. Karl Pearson of course s tud ied  it extens ive ly  and 

h i s  name i s  firmly attached t o  t h e  Type I11 version of  t h i s  d i s t r i b u -  

t i o n .  A development of t h e  Type I11 d i s t r i b u t i o n  toge the r  with t a b l e s  

o f  areas was presented i n  NASA CR-61266 by t h e  writer i n  co l l abora t ion  



with H e l m  and Sugg [3].  Harter [7,8] and Harter and Moore [6] have 

r ecen t ly  given considerable  a t t e n t i o n  t o  t h e  gamma d i s t r i b u t i o n  and 

t o  i t s  various s p e c i a l  cases  as w e l l  as t o  c e r t a i n  genera l iza t ions .  

2. THE FOUR-PARAMETER DISTRIBUTION 

A four parameter general ized Weibull d i s t r i b u t i o n  may be 

obtained from (1) by making t h e  t ransformation 

The Pearson Type I11 d i s t r i b u t i o n  may then be considered as a spec ia l  

case o f  the 4-parameter Weibull d i s t r i b u t i o n  i n  which 

t h e  transforma+ion (2 ) ,  i t  follows t h a t  

6 = 1. Using 

and subsequently , w e  have 

0, elsewhere,  L 
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If we t r a n s l a t e  t h e  o r ig in  i n  (3) t o  t h e  po in t  x = Y; i .e.  i f  

we make t h e  transformation 

w = x - y ,  (4) 

t h e  dens i ty  func t ion  (3) becomes 

r 6 

0, elsewhere . i 
The k th  moment o f  w about t h e  o r i g i n  may then be w r i t t e n  as 

On i n t e g r a t i n g  (6), we obtain 

? Bk/6 
- r[(k/6) + a + 11 . k;w - r(a + 1) 

(7) 

The mean, var iance ,  and t h e  t h i r d  and fou r th  standard moments 

follow as 

3 



a 3:w = B ( i r , G j  / A3’2(a,6j , 
} (8) 
I 

I 

i 

where 
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3 c(a,s)  = r (a+l)r[(4/6) + u + 11 

2 
- 4 r  (a+l) r[ (3/6) + a + 13 r[(1/6) + a + 11 

+61’(a+l)r[(2/6) + a + l]r2[(1/6) + a + 11 

-34(1/6) + a + 13 . 

(9) 

(continued ) 

The square of the coefficient of variation may be written as 

r 7 

, a3 and a are invariant under 2 
4 Since w = x - y, and since u 

translation of the origin, it follows that 

2 2 
X w ’  0 = 0  

a = a  3:x 3:w ’ 

4:w a = a  4:x 

5 
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The distribution function of the random variable W may be 

written as 

J O  

whi ch be comes 

6 where I [ ( w  / e ) ;  a + 13 is the incomplete gamma function. 

3 .  MOMENT ESTIMATION 

In the general four-parameter distribution, the moment 

estimates are found by simultaneously solving the following 

. I  

6 
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r (CL + 1) D(a,6) = 

a = B(a,6) / A3’2(a,6) , 3 

where A(cL, 6)  , B(a,6) and C ( a , 6 )  a re  given i n  equations (9) 

The last two equations of (13) may be solved simultaneously 
* * 

f o r  a and 6 . With t h e  values thus found, w e  es t imate  B from 

t h e  second equation a s  

* 
e* = lx ‘(r 1 ‘ ) I 6 *  = s6* D(a * *  ,6 ) , 

X 
A(a ,6 1 

where 

F ina l ly  w e  es t imate  y from t h e  f irst  equation of (13) as 

7 



which may be wr i t t en  as 

where 

An a l t e r n a t e  s e t  of es t imates  may be  obtained by replacing - 
t he  fourth s tandard moment of  (13) with the  smal les t  sample ( i . e .  

t h e  f i r s t  order s t a t i s t i c )  observat ion.  Thus we have, 

X = Y ,  min 

a = B(a ,6 )  / A312(a,6) , 3 

i 
(19) I 

From the  f irst  equation of  (19) we have 

** 
y = x  min ' 

8 



From the second and third equations we have 

We solve (21) and the fourth equation of (19) simultaneously 
** ** 

f o r  a and S . It then follows as with the basic moment 

estimates that 

** 6** ** ** 
B = s D(a ,6 ) . X 

4. MAXIMUM LIKELIHOOD ESTIMATION 

The likelihood function of a random-sample of n observations 

from the four-parameter distribution with density (3) may be written 

as 

I 

The logarithm of (23) follows as 

9 



In L = n In 6 - n(a + 1) In B - n In r (a  + 1) 

n n 
+ [&(a + 1) -11 c In (xi 

1 1 

On differentiating (24)  with respect to f3, 6, y, and a in turn 

and equating to zero, we obtain the following estimating equations 

6 = o ,  + - c (Xi - y) 
n 1 -n(a + 1) 

B B 2  1 

n 

1 
-n $(a + 1) - n In f3 + 6 ln(xi - y) 

= o ,  

= o ,  

where $(a + 1) = aln r ( a  + 1) is the Digamma function. 
aa '* 

The required maximum likelihood estimates are to be obtained 

by simultaneously solving the four equations of (25). 

be accomplished using various iterative techniques. 

a general solution, let us examine certain possible simplifications. 

This task may 

Before discussing 

i o  
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From t h e  f irst  equation of (25) , it follows t h a t  

6 
n 

1 
E (Xi - Y) 

B =  
n(a  + 1) 

On s u b s t i t u t i n g  (26) i n t o  t h e  second equation of (25), we have 

n 

1 
- -  l c  

n 

6 
n 

I 
n 

(a+l )  C (xi-y) In  (x.-y) 
1 

6 6 

1 
- -  

ln(xi - y) = 0 . 

On s u b s t i t u t i n g  (26) i n t o  t h e  four th  equation of (25) ,  we have 

1 
6 

G(a,G,y) = - I n  1 
- - J ,  6 (a + 1) 

n 

1 
- -  E ln(xi - y) = o . 

n 

On making a s i m i l a r  s u b s t i t u t i o n  o f  (26) i n t o  t h e  t h i r d  equation of 

(25 ) ,  we have 

11 



Our task has now been reduced to that of solving (?7), (28) and 

(29) simultaneously for the required estimates a ,  B, and y . 

With this solution accomplished, B will then follow from ( 2 6 )  on 

h A h 

h 

replacing a ,  6, and y in that equation with their respective estimates. 

Although the solution of these equations in the general case might 

be considered rather formidable, the special case in which y is known 

is much simpler. Suppose for example that y is known to be zero. 

Should y have some value other than zero, as long as it is known we can 

introduce a new variable Y = X - y and then Y has the range Y - > 0 . 
With y known, we need only solve the pair of equations 

H ( a , 6 )  = 0 and G(a,6) = 0 where G and H are as defined in (28) 

and (27) using the known value for y . We might choose a value 

a and with a. fixed, solve H(a ,6) = 0 for . Next calculate 

G(a , 6  ) and if the calculated value is zero, our task is finished. 

Otherwise, we choose a second value a1 and solve H(al, 6) = 0 for 

61. Now calculate G(al,bl) . If G(ao,GO) and G(a1,61) are of 

0 ’  0 

0 0  

0 

h 

opposite signs, we may interpolate for the required estimate a , and 

in turn for 6 as summarized below. 
A 

12 
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I ’  

a 

,. n 

INTERPOLATION FOR a and 6 

a 
0 

n 

a 

1 a 

0 
6 

n 

6 

61 

,. n ,. 
With a and 6 thus determined, follows on s u b s t i t u t i n g  

L L - - -  L l l e 3 t :  va:iles into (26). 0bvious?y, it is desirzble tz chzese vzlnes 

h 

a and a t h a t  are good approximations t o  a . If t h e  first choices 

are not  s u f f i c i e n t l y  c lose  t o  

0 1 
n 

a ,  then it may be necessary t o  make 

s e v e r a l  t r i a l s  before a r r i v i n g  at a s u i t a b l e  p a i r  which i n  t h e  nota t ion  

1 ’  employed here  would be labeled a and a 
0 

In t h e  general  case with Y t o  be estimated, we might begin 

by choosing a value (approximation) 

va lues  CL I y and 6 Iy which a r e  t o  be thought of  as condi t ional  

estimates given t h a t  y = 

Simi la r ly ,  we select a value 

evaluated 

f o r  y and y a r e  such t h a t  our two evaluat ions of  J a r e  of  

opposi te  s igns.  

yo and proceed as above t o  f ind  
,. n 

0 0 
,. n 

We then c a l c u l a t e  J [ (a1 yo), ( 6  ]yo) ,yo] . yo 

y1 and repea t  t h e  process u n t i l  w e  have 

We continue u n t i l  our f i n a l  choice 
,. * 

J[ (alyl), (6 Iyl) ,  yl]  . 
0 1 

We then in t e rpo la t e  as summarized below. 

13 



A 

INTERPOLATION FOR Y 

A 

Y 0 a 6 

h A A I  

With a , 6 and y thus determined, B follows as before on 

substituting these values into ( 2 6 ) .  Linear interpolation can be 

expected to yield satisfactory estimates if the absolute value 

I Y1 - Y o  I is sufficiently small. 

However, several attempts may be necessary before obtaining a pair 

of approximations that meet any reasonable definition of “sufficiently 

small’’ as used here. 

5.  THE THREE-PARAMETER WEIBULL DISTRIBUTION 

The standard three-parameter Weibull distribution may be viewed 

as a special case of the four-parameter distribution. 

function follows from (3) on setting a = 0. We thus have 

Its density 

= 0, elsewbere. 
14 



I 

In  t h i s  case,  t h e  moment es t imat ing equations of (13) reduce t o  

The t h i r d  s tandard moment is  a funct ion of  t he  shape parameter 

6 only. Therefore t h e  t h i r d  equation of (31) can be solved for 6 , 

and . the  remaining moment es t imates  follows a s  

* 

Alterna te  es t imates  can be obtained by s e t t i n g  .. 

**  
y = x  min ' (33) 

i . e .  s e t t i n g  y equal t o  t h e  f i r s t  order  s ta t i s t ic ,  and then dropping 

t h e  t h i r d  equation of (31). On el iminat ing B between t h e  two remaining 

equations of (31) w e  have 

(34) 

15 



** ** 
Equation (34) can be solved f o r  6 , and B then follows from 

t h e  second equation o f  C31), when 6 i s  s u b s t i t u t e d  f o r  6 .  
* *  

6.  ILLUSTRATIVE EXAMPLES 

To i l l i l s t r a t e  app l i ca t ion  of  r e s u l t s  obtained here ,  estimates 

have been ca lcu la ted  f o r  two separa te  samples from three-parameter 

Weibull d i s t r i b u t i o n s .  The f i r s t  sample cons i s t s  o f  250 observat ions 

se l ec t ed  with the  a i d  of a random number generator  from a populat ion 

i n  which B = 1 6  , 6 = 2 , and y = 10. The sNond  c o n s i s t s  of 

200 observations se l ec t ed  i n  the  same manner from a populat ion i n  

which B = 8, 6 = 3, and y = 4. 

Example 1: 

Following is  a summary of  t h e  sample d a t a  f o r  t h i s  example: 

Class I n t e r v a l  Frequency 

10.00 

10.75 

11.50 

12.25 

13.00 

13.75 

14.50 

15.25 

16.00 

16.75 

17.50 

18.25 

10.75 7 

11.50 23 

12.25 39 

13.00 40 

13.75 36 

14.50 38 

15.25 29 

16.00 16 

16.75 1 2  

17.50 7 

18.25 2 

19.00 1 

Tot a1 250 

16 

- 
x = 13.494 

s = 2.853 

= 0.408 

X = 10.227 

n = 250 

2 

min 

- 2  250 

1 
s 2 = C (xi - X) /250. 



The summary s ta t i s t ics  were ca lcu la ted  d i r e c t l y  from t h e  raw 

da ta  and a re  thus  not sub jec t  t o  grouping erroBwhich might be 

present  i n  corresponding values ca lcu la ted  from t h e  preceding 

frequency t ab le .  

t he  t r u e  population values a r e  given below: 

Estimates calculated from these  da t a  along with 

SUMMARY OF ESTIMATES 

Type 
Estimator 

Moment 

M a x i m u m  
Like 1 i hood 

Two Moments and 
1st Order S t a t .  

True Values 

33.599 2.408 9.678 4.305 i 
20.169 2.188 9.998 3.948 

14.041 2.025 10.227 3.687 

13.494 2.842 0.516 3.051 / I /  

i 
This example, of  course,  i s  f o r  t h e  spec ia l  case i n  which 

a = 0 , and t h e  moment es t imates  were obtained by simultaneously 

s ~ l - ~ - l i - ~ g  LL- LllC *h--fifi cIIlbb ey--bAv..- n n ~ q q + <  nnc cf [-?I> rising the given sample da ta .  

The m a x i m u m  l ike l ihood est imates  were ca lcu la ted  by simultaneously 

solving the  f irst  t h r e e  equations of  (25) with CL = 0 , while the  

es t imates  based the  first two moments and the  f irst  order  s t a t i s t i c  

1 
! 

I *  
i 

were obtained by simultaneously solving the  first th ree  equations 

of (19) with a = 0 . For comparison, t he  t r u e  population values 

a r e  a l s o  included. 

Example 2 

The second sample was obtained i n  the  same manner a s  t h e  f irst  

and t h e  est imates  based on t h i s  sample were l i k e w i s e  obtained using 

17 



t h e  same procedures as f o r  t h e  f i r s t  example. Following are summaries 

of both t h e  sample d a t a  and t h e  estimates obtained for t h i s  example. 

Class I n t e r v a l  Frequency 

4 . 2 5  - 4.50 5 

4.50 - 4.75 

4.75 - 5.00 9 s2 = 0.450 

5.00 - 5.25 19 a3 = 0.023 

5.25 - 5.50 23 X = 4.266 

5.50 - 5.75 25 . 

- 
4 x = 5.886 

min 

n = 200 

5.75 

6.00 

6.25 

6.50 

6.75 

7.00 

7.25 

7.50 

6.00 

6.25 

6.50 

6.75 

7.00 

7.25 

7.50 

7.75 

27 

28 

23 

18 

9 

5 

3 

2 

Tota l  200 

SUWARY OF ESTIMATES 

Moment 20.407 3.510 S . 7 b 1  L.5bl U.4JU : U . U L 3  L . .  I L J  

Maximum i 
i 

I 
Likelihood 20.073 3.503 3.767 2.354 5.886 i 0.449 '0 .024  I 

I 
Two Moment and I 
1st Order S t a t .  4.758 2.594 4.266 1.824 0.450 0.318 2.820 

I 

I 
i I i I 

I I i 
True Values 15.786 I 0.421 I 0.1681 2.729 

18 



Calculat ions f o r  these  two i l l u s t r a t i v e  examples were ca r r i ed  

out by M r .  Russell  Helm. 

Maximum l ikel ihood estimating equations appl icable  here follow 

from those given i n  equation (25) f o r  t he  general  four-parameter 

d i s t r i b u t i o n  when we set a = 0. We accordingly r e t a i n  the  first 

th ree  equations of (25) with 

f o r  y ,  6 ,  and B ,  Solution of  these  est imat ing equations 

u = 0 t o  be solved simultaneously 
A ,. h 

i n  t he  case where 

reference [2] and elsewhere. 

y = 0 have been r a t h e r  f u l l y  discussed i n  

7. SOME CONCLUDING REMARKS 

Since the  range over which our random va r i ab le  is defined 

depends on y , t h e  est imat ion of t h i s  parameter presents  c e r t a i n  

d i f f i c u l t i e s  not  encountered i n  es t imat ing o the r  parameters. 

y I x, 

est imate .  This es t imate  i s  of course biased s ince  x c o n s t i t u t e s  

an upper bound on y .  Furthermore i n  c e r t a i n  d i s t r i b u t i o n s ,  t h e  

l ike l ihood funct ion becomes i n f i n i t e l y  la rge  when we s e t  

As a way out of  these  d i f f i c u l t i e s  i n  connection with the  log-normal 

d i s t r i b u t i o n  i n  which the  lower l i m i t  i s  one of t h e  parameters t o  

be est imated,  t he  w r i t e r  [l] i n  1951 suggested using t h e  following 

r e l a t i o n  

With 

it seems na tu ra l  t o  employ t h e  first order  s t a t i s t i c  as  an 

1 

= xl' 

19 



i n  which 

xo = x1 + n/2 

where x i s  the  f i r s t  order  s t a t i s t i c  and n i s  the  i n t e r v a l  o f  

precis ioi i  with which x has been measured. We l e t  k des igna te  

the  number of times t h a t  x occurs i n  a sample of s i z e  n.  In most 

samples o f  concern t o  us ,  k = 1. 

1 

1 

1 

Since the  in t eg ra t ion  i s  easy t o  ca r ry  out i n  t h e  case of  t h e  

Weibull and r e l a t e d  d i s t r i b u t i o n s ,  it would appear t h a t  es t imat ing  

equation ( 3 5 )  might be q u i t e  usefu l  i n  es t imat ing y i n  these  

d i s t r i b u t i o n s  as well as i n  t h e  log-normal d i s t r i b u t i o n .  Further  

i nves t iga t ion  o f  t h e  r e s u l t i n g  es t imators  and t h e i r  p rope r t i e s  i s  

planned as a fu tu re  p ro jec t .  

20 
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